TGFβ promotes fibrosis by MYST1-dependent epigenetic regulation of autophagy

Activation of fibroblasts is essential for physiological tissue repair. Uncontrolled activation of fibroblasts, however, may lead to tissue fibrosis with organ dysfunction. Although several pathways capable of promoting fibroblast activation and tissue repair have been identified, their interplay in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-07, Vol.12 (1), p.4404-4404, Article 4404
Hauptverfasser: Zehender, Ariella, Li, Yi-Nan, Lin, Neng-Yu, Stefanica, Adrian, Nüchel, Julian, Chen, Chih-Wei, Hsu, Hsiao-Han, Zhu, Honglin, Ding, Xiao, Huang, Jingang, Shen, Lichong, Györfi, Andrea-Hermina, Soare, Alina, Rauber, Simon, Bergmann, Christina, Ramming, Andreas, Plomann, Markus, Eckes, Beate, Schett, Georg, Distler, Jörg H. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Activation of fibroblasts is essential for physiological tissue repair. Uncontrolled activation of fibroblasts, however, may lead to tissue fibrosis with organ dysfunction. Although several pathways capable of promoting fibroblast activation and tissue repair have been identified, their interplay in the context of chronic fibrotic diseases remains incompletely understood. Here, we provide evidence that transforming growth factor-β (TGFβ) activates autophagy by an epigenetic mechanism to amplify its profibrotic effects. TGFβ induces autophagy in fibrotic diseases by SMAD3-dependent downregulation of the H4K16 histone acetyltransferase MYST1, which regulates the expression of core components of the autophagy machinery such as ATG7 and BECLIN1. Activation of autophagy in fibroblasts promotes collagen release and is both, sufficient and required, to induce tissue fibrosis. Forced expression of MYST1 abrogates the stimulatory effects of TGFβ on autophagy and re-establishes the epigenetic control of autophagy in fibrotic conditions. Interference with the aberrant activation of autophagy inhibits TGFβ-induced fibroblast activation and ameliorates experimental dermal and pulmonary fibrosis. These findings link uncontrolled TGFβ signaling to aberrant autophagy and deregulated epigenetics in fibrotic diseases and may contribute to the development of therapeutic interventions in fibrotic diseases. Uncontrolled activation of fibroblasts contributes to tissue fibrosis and organ dysfunction. Here the authors demonstrate that the epigenetic control of autophagy is disturbed by a TGFβ-dependent downregulation of MYST1 in systemic sclerosis patients. Restoration of the epigenetic control of autophagy reduces fibroblast activation and ameliorates fibrotic tissue remodeling.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24601-y