An up-scaled biotechnological approach for phosphorus-depleted rye bran as animal feed

Side streams from the milling industry offer excellent nutritional properties for animal feed; yet their use is constrained by the elevated phosphorus (P) content, mainly in the form of phytate. Biotechnological P recovery fosters sustainable P management, transforming these streams into P-depleted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresources and Bioprocessing 2024-05, Vol.11 (1), p.49-49, Article 49
Hauptverfasser: Widderich, Niklas, Stotz, Johanna, Lohkamp, Florian, Visscher, Christian, Schwaneberg, Ulrich, Liese, Andreas, Bubenheim, Paul, Ruff, Anna Joëlle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Side streams from the milling industry offer excellent nutritional properties for animal feed; yet their use is constrained by the elevated phosphorus (P) content, mainly in the form of phytate. Biotechnological P recovery fosters sustainable P management, transforming these streams into P-depleted animal feed through enzymatic hydrolysis. The enzymatic P mobilization not only enables P recovery from milling by-products but also supports the valorization of these streams into P-depleted animal feeds. Our study presents the scalability and applicability of the process and characterizes the resulting P-depleted rye bran as animal feed component. Batch mode investigations were conducted to mobilize P from 100 g to 37.1 kg of rye bran using bioreactors up to 400 L. P reductions of 89% to 92% (reducing from 12.7 g P /kg to 1.41–1.28 g P /kg) were achieved. In addition, High Performance Ion Chromatography (HPIC) analysis showed complete depletion of phytate. The successful recovery of the enzymatically mobilized P from the process wastewater by precipitation as struvite and calcium hydrogen phosphate is presented as well, achieving up to 99% removal efficiency. Our study demonstrates a versatile process that is easily adaptable, allowing for a seamless implementation on a larger scale. Graphical Abstract
ISSN:2197-4365
2197-4365
DOI:10.1186/s40643-024-00765-5