Mathematical study of polycystic ovarian syndrome disease including medication treatment mechanism for infertility in women

Among women of reproductive age, PCOS (polycystic ovarian syndrome) is one of the most prevalent endocrine illnesses. In addition to decreasing female fertility, this condition raises the risk of cardiovascular disease, diabetes, dyslipidemia, obesity, psychiatric disorders and other illnesses. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Public Health 2024-01, Vol.11 (1), p.19-35
Hauptverfasser: Batool, Maryam, Farman, Muhammad, Ahmad, Aqeel, Nisar, Kottakkaran Sooppy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among women of reproductive age, PCOS (polycystic ovarian syndrome) is one of the most prevalent endocrine illnesses. In addition to decreasing female fertility, this condition raises the risk of cardiovascular disease, diabetes, dyslipidemia, obesity, psychiatric disorders and other illnesses. In this paper, we constructed a fractional order model for polycystic ovarian syndrome by using a novel approach with the memory effect of a fractional operator. The study population was divided into four groups for this reason: Women who are at risk for infertility, PCOS sufferers, infertile women receiving therapy (gonadotropin and clomiphene citrate), and improved infertile women. We derived the basic reproductive number, and by utilizing the Jacobian matrix and the Routh-Hurwitz stability criterion, it can be shown that the free and endemic equilibrium points are both locally stable. Using a two-step Lagrange polynomial, solutions were generated in the generalized form of the power law kernel in order to explore the influence of the fractional operator with numerical simulations, which shows the impact of the sickness on women due to the effect of different parameters involved.
ISSN:2327-8994
2327-8994
DOI:10.3934/publichealth.2024002