Screening and Stability Evaluation of Freeze-Dried Protective Agents for a Live Recombinant Pseudorabies Virus Vaccine
Infection of pigs with the pseudorabies virus (PRV) causes significant economic losses in the pig industry. Immunization with live vaccines is a crucial aspect in the prevention of pseudorabies in swine. The TK/gE/gI/11k/28k deleted pseudorabies vaccine is a promising alternative for the eradication...
Gespeichert in:
Veröffentlicht in: | Vaccines (Basel) 2024-01, Vol.12 (1), p.65 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Infection of pigs with the pseudorabies virus (PRV) causes significant economic losses in the pig industry. Immunization with live vaccines is a crucial aspect in the prevention of pseudorabies in swine. The TK/gE/gI/11k/28k deleted pseudorabies vaccine is a promising alternative for the eradication of epidemic pseudorabies mutant strains. This study optimized the lyophilization of a heat-resistant PRV vaccine to enhance the quality of a live vaccine against the recombinant PRV rHN1201
. The A4 freeze-dried protective formulation against PRV was developed by comparing the reduction in virus titer after lyophilization and after seven days of storage at 37 °C. The formulation contains 1% gelatin, 5% trehalose, 0.5% poly-vinylpyrimidine (PVP), 0.5% thiourea, and 1% sorbitol. The A4 freeze-dried vaccine demonstrated superior protection and thermal stability. It experienced a freeze-dried loss of 0.31 Lg post-freeze-drying and a heat loss of 0.42 Lg after being stored at a temperature of 37 °C for 7 consecutive days. The A4 freeze-dried vaccine was characterized through XRD, FTIR, and SEM analyses, which showed that it possessed an amorphous structure with a consistent porous interior. The trehalose component of the vaccine formed stable hydrogen bonds with the virus. Long-term and accelerated stability studies were also conducted. The A4 vaccine maintained viral titer losses of less than 1.0 Lg when exposed to 25 °C for 90 days, 37 °C for 28 days, and 45 °C for 7 days. The A4 vaccine had a titer loss of 0.3 Lg after storage at 2-8 °C for 24 months, and a predicted shelf life of 6.61 years at 2-8 °C using the Arrhenius equation. The A4 freeze-dried vaccine elicited no side effects when used to immunize piglets and produced specific antibodies. This study provides theoretical references and technical support to improve the thermal stability of recombinant PRV rHN1201
vaccines. |
---|---|
ISSN: | 2076-393X 2076-393X |
DOI: | 10.3390/vaccines12010065 |