A Low-Complexity Ordered Statistics Decoding Algorithm for Short Polar Codes

In this paper, we propose a low-complexity ordered statistics decoding (OSD) algorithm called threshold-based OSD (TH-OSD) that uses a threshold on the discrepancy of the candidate codewords to speed up the decoding of short polar codes. To determine the threshold, we use the probability distributio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019, Vol.9 (5), p.831
Hauptverfasser: Xing, Yusheng, Tu, Guofang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a low-complexity ordered statistics decoding (OSD) algorithm called threshold-based OSD (TH-OSD) that uses a threshold on the discrepancy of the candidate codewords to speed up the decoding of short polar codes. To determine the threshold, we use the probability distribution of the discrepancy value of the maximal likelihood codeword with a predefined parameter controlling the trade-off between the error correction performance and the decoding complexity. We also derive an upper-bound of the word error rate (WER) for the proposed algorithm. The complexity analysis shows that our algorithm is faster than the conventional successive cancellation (SC) decoding algorithm in mid-to-high signal-to-noise ratio (SNR) situations and much faster than the SC list (SCL) decoding algorithm. Our addition of a list approach to our proposed algorithm further narrows the error correction performance gap between our TH-OSD and OSD. Our simulation results show that, with appropriate thresholds, our proposed algorithm achieves performance close to OSD’s while testing significantly fewer codewords than OSD, especially with low SNR values. Even a small list is sufficient for TH-OSD to match OSD’s error rate in short-code scenarios. The algorithm can be easily extended to longer code lengths.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9050831