Simulation and Experimental Investigation of the Radial Groove Effect on Slurry Flow in Oxide Chemical Mechanical Polishing

Slurry flow on the pad surface and its effects on oxide chemical mechanical polishing (CMP) performance were investigated in simulations and experiments. A concentric groove pad and the same pad with radial grooves were used to quantitatively compare the slurry saturation time (SST), material remova...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-05, Vol.12 (9), p.4339
Hauptverfasser: Cho, Yeongkwang, Liu, Pengzhan, Jeon, Sanghuck, Lee, Jungryul, Bae, Sunghoon, Hong, Seokjun, Kim, Young Hwan, Kim, Taesung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Slurry flow on the pad surface and its effects on oxide chemical mechanical polishing (CMP) performance were investigated in simulations and experiments. A concentric groove pad and the same pad with radial grooves were used to quantitatively compare the slurry saturation time (SST), material removal rate (MRR), and non-uniformity (NU) in polishing. The monitored coefficient of friction (COF) and its slope were analyzed and used to determine SSTs of 25.52 s for the concentric groove pad and 16.06 s for a certain radial groove pad. These values were well correlated with the simulation prediction, with around 5% error. Both the laminar flow and turbulent flow were included in the sliding mesh model. The back mixing effect, which delays fresh slurry supply, was found in the pressure distribution of the wafer–pad interface.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12094339