Multiple small solutions for p ( x ) -Schrödinger equations with local sublinear nonlinearities via genus theory
In this paper, we deal with the following $p(x)$-Schrödinger problem: \begin{equation*} \begin{cases} -\text{div}(|\nabla u|^{p(x)-2}\nabla u)+V(x)\left\vert u\right\vert ^{p(x)-2}u=f(x,u) & \hbox{in $\mathbb{R}^{N}$ ;} \\ u\in W^{1,p(x)}(\mathbb{R}^{N}), & \hbox{} \end{cases} \end{equation*...
Gespeichert in:
Veröffentlicht in: | Electronic journal of qualitative theory of differential equations 2017-01, Vol.2017 (75), p.1-16 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we deal with the following $p(x)$-Schrödinger problem: \begin{equation*} \begin{cases} -\text{div}(|\nabla u|^{p(x)-2}\nabla u)+V(x)\left\vert u\right\vert ^{p(x)-2}u=f(x,u) & \hbox{in $\mathbb{R}^{N}$ ;} \\ u\in W^{1,p(x)}(\mathbb{R}^{N}), & \hbox{} \end{cases} \end{equation*} where the nonlinearity is sublinear. We present the existence of infinitely many solutions for the problem. The main tool used here is a variational method and Krasnoselskii's genus theory combined with the theory of variable exponent Sobolev spaces. We also establish a Bartsch–Wang type compact embedding theorem for the variable exponent spaces. |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2017.1.75 |