Distributions of photosynthetic traits, shoot growth, and anti-herbivory defence within a canopy of Quercus serrata in different soil nutrient conditions

The hypothesis of the present study is that not only distributions of leaf photosynthetic traits and shoot growth along light gradient within a canopy of forest trees, but also that of leaf anti-herbivory defence capacities are influenced by soil nutrient condition. To test this hypothesis, we inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-07, Vol.11 (1), p.14485-14485, Article 14485
Hauptverfasser: Norisada, Masanari, Izuta, Takeshi, Watanabe, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hypothesis of the present study is that not only distributions of leaf photosynthetic traits and shoot growth along light gradient within a canopy of forest trees, but also that of leaf anti-herbivory defence capacities are influenced by soil nutrient condition. To test this hypothesis, we investigated the distributions of photosynthetic traits, shoot growth, anti-herbivory defence and leaf herbivory rate throughout the canopy of Quercus serrata grown in two sites with different soil nutrient conditions. In both sites, photosynthetic traits, shoot growth, and anti-herbivory defence were greater in the upper canopy. The overall defence and herbivory rate in the lower nutrient condition were higher and lower than those in the higher nutrient condition, respectively. Although differences in leaf traits between upper and lower canopies in the higher nutrient condition were smaller than those in the lower nutrient condition, no difference was found for anti-herbivory defence. These results suggest that soil nutrient condition does not affect the distributions of leaf anti herbivory defence along light gradient within a canopy of Q. serrata .
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-93910-5