Liver Semantic Segmentation Algorithm Based on Improved Deep Adversarial Networks in Combination of Weighted Loss Function on Abdominal CT Images

Due to the space inconsistency between benchmark image and segmentation result in many existing semantic segmentation algorithms for abdominal CT images, an improved model based on the basic framework of DeepLab-v3 is proposed, and Pix2pix network is introduced as the generation adversarial model. O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.96349-96358
Hauptverfasser: Xia, Kaijian, Yin, Hongsheng, Qian, Pengjiang, Jiang, Yizhang, Wang, Shuihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the space inconsistency between benchmark image and segmentation result in many existing semantic segmentation algorithms for abdominal CT images, an improved model based on the basic framework of DeepLab-v3 is proposed, and Pix2pix network is introduced as the generation adversarial model. Our proposed model realizes the segmentation framework combining deep feature with multi-scale semantic feature. In order to improve the generalization ability and training accuracy of the model, this paper proposes a combination of the traditional multi-classification cross-entropy loss function with the content loss function of generator output and the adversarial loss function of discriminator output. A large number of qualitative and quantitative experimental results show that the performance of our proposed semantic segmentation algorithm is better than the existing algorithms, and can improve the segmentation efficiency while ensuring the space consistency of the semantics segmentation for abdominal CT images.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2929270