Adaptive variational quantum minimally entangled typical thermal states for finite temperature simulations

Scalable quantum algorithms for the simulation of quantum many-body systems in thermal equilibrium are important for predicting properties of quantum matter at finite temperatures. Here we describe and benchmark a quantum computing version of the minimally entangled typical thermal states (METTS) al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SciPost physics 2023-09, Vol.15 (3), p.102, Article 102
Hauptverfasser: Getelina, João C., Gomes, Niladri, Iadecola, Thomas, Orth, Peter P., Yao, Yong-Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scalable quantum algorithms for the simulation of quantum many-body systems in thermal equilibrium are important for predicting properties of quantum matter at finite temperatures. Here we describe and benchmark a quantum computing version of the minimally entangled typical thermal states (METTS) algorithm for which we adopt an adaptive variational approach to perform the required quantum imaginary time evolution. The algorithm, which we name AVQMETTS, dynamically generates compact and problem-specific quantum circuits, which are suitable for noisy intermediate-scale quantum (NISQ) hardware. We benchmark AVQMETTS on statevector simulators and perform thermal energy calculations of integrable and nonintegrable quantum spin models in one and two dimensions and demonstrate an approximately linear system-size scaling of the circuit complexity. We further map out the finite-temperature phase transition line of the two-dimensional transverse field Ising model. Finally, we study the impact of noise on AVQMETTS calculations using a phenomenological noise model.
ISSN:2542-4653
2542-4653
DOI:10.21468/SciPostPhys.15.3.102