Study of Cytotoxicity of Spiro-Fused [3-Azabicyclo[3.1.0]hexane]oxindoles and Cyclopropa[a]pyrrolizidine-oxindoles Against Tumor Cell Lines
Background: A series of spiro-fused heterocyclic compounds containing cyclopropa[a]pyrrolizidine-2,3′-oxindole and 3-spiro[3-azabicyclo[3.1.0]-hexane]oxindole frameworks were synthesized and studied for their in vitro antiproliferative activity against human erythroleukemia (K562), cervical carcinom...
Gespeichert in:
Veröffentlicht in: | Pharmaceuticals (Basel, Switzerland) Switzerland), 2024-11, Vol.17 (12), p.1582 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: A series of spiro-fused heterocyclic compounds containing cyclopropa[a]pyrrolizidine-2,3′-oxindole and 3-spiro[3-azabicyclo[3.1.0]-hexane]oxindole frameworks were synthesized and studied for their in vitro antiproliferative activity against human erythroleukemia (K562), cervical carcinoma (HeLa), acute T cell leukemia (Jurkat), melanoma (Sk-mel-2) and breast cancer (MCF-7) as well as mouse colon carcinoma (CT26) cell lines. Methods: Cell proliferation was evaluated in vitro by MTS assay. Confocal microscopy was used to study actin cytoskeleton structure and cell motility. Cell cycle analysis was evaluated by flow cytometry. Results: It was found that compounds 4, 8, 18 and 24 showed antiproliferative activity against the Jurkat, K-562, HeLa and Sk-mel-2 cell lines with IC50 ranging from 2 to 10 μM (72 h). Evaluation of the impact on cell cycle progression showed that the tested compounds achieved significant cell-cycle perturbation with a higher accumulation of cells in the SubG1 and G0/G1 phases of the cell cycle, in comparison to the negative control. I Incubation with tested compounds led to the disappearance of stress fibers (granular actin was distributed diffusely in the cytoplasm in up to 38% of treated HeLa cells) and changes in the number of filopodia-like deformations (reduced from 93% in control cells to 64% after treatment). The impact on the Sk-mel-2 cell actin cytoskeleton structure was even greater: granular actin was distributed diffusely in the cytoplasm in up to 90% of treated cells while the number of filopodia-like deformations was reduced by up to 23%. A scratch test performed on the human melanoma cell line showed that these cells did not fill the scratched strip and lose their ability to move under treatment. Conclusions: The obtained results support the antitumor effect of the tested spiro-compounds and encourage the extension of this study in order to improve their anticancer activity as well as reduce their toxicological risks. |
---|---|
ISSN: | 1424-8247 1424-8247 |
DOI: | 10.3390/ph17121582 |