Weak-Texture Seafloor and Land Image Matching Using Homography-Based Motion Statistics with Epipolar Geometry

The matching of remote sensing images is a critical and necessary procedure that directly impacts the correctness and accuracy of underwater topography, change detection, digital elevation model (DEM) generation, and object detection. The texture of images becomes weaker with increasing water depth,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-07, Vol.16 (14), p.2683
Hauptverfasser: Chen, Yifu, Le, Yuan, Wu, Lin, Zhang, Dongfang, Zhao, Qian, Zhang, Xueman, Liu, Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The matching of remote sensing images is a critical and necessary procedure that directly impacts the correctness and accuracy of underwater topography, change detection, digital elevation model (DEM) generation, and object detection. The texture of images becomes weaker with increasing water depth, and this results in matching-extraction failure. To address this issue, a novel method, homography-based motion statistics with an epipolar constraint (HMSEC), is proposed to improve the number, reliability, and robustness of matching points for weak-textured seafloor images. In the matching process of HMSEC, a large number of reliable matching points can be identified from the preliminary matching points based on the motion smoothness assumption and motion statistics. Homography and epipolar geometry are also used to estimate the scale and rotation influences of each matching point in image pairs. The results show that the matching-point numbers for the seafloor and land regions can be significantly improved. In this study, we evaluated this method for the areas of Zhaoshu Island, Ganquan Island, and Lingyang Reef and compared the results to those of the grid-based motion statistics (GMS) method. The increment of matching points reached 2672, 2767, and 1346, respectively. In addition, the seafloor matching points had a wider distribution and reached greater water depths of −11.66, −14.06, and −9.61 m. These results indicate that the proposed method could significantly improve the number and reliability of matching points for seafloor images.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16142683