RGB-D Data-Based Action Recognition: A Review

Classification of human actions is an ongoing research problem in computer vision. This review is aimed to scope current literature on data fusion and action recognition techniques and to identify gaps and future research direction. Success in producing cost-effective and portable vision-based senso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (12), p.4246
Hauptverfasser: Shaikh, Muhammad Bilal, Chai, Douglas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classification of human actions is an ongoing research problem in computer vision. This review is aimed to scope current literature on data fusion and action recognition techniques and to identify gaps and future research direction. Success in producing cost-effective and portable vision-based sensors has dramatically increased the number and size of datasets. The increase in the number of action recognition datasets intersects with advances in deep learning architectures and computational support, both of which offer significant research opportunities. Naturally, each action-data modality-such as RGB, depth, skeleton, and infrared (IR)-has distinct characteristics; therefore, it is important to exploit the value of each modality for better action recognition. In this paper, we focus solely on data fusion and recognition techniques in the context of vision with an RGB-D perspective. We conclude by discussing research challenges, emerging trends, and possible future research directions.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21124246