A Note on Wavelet Estimation of the Derivatives of a Regression Function in a Random Design Setting
We investigate the estimation of the derivatives of a regression function in the nonparametric regression model with random design. New wavelet estimators are developed. Their performances are evaluated via the mean integrated squared error. Fast rates of convergence are obtained for a wide class of...
Gespeichert in:
Veröffentlicht in: | International Journal of Mathematics and Mathematical Sciences 2014, Vol.2014 (2014), p.92-99 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the estimation of the derivatives of a regression function in the nonparametric regression model with random design. New wavelet estimators are developed. Their performances are evaluated via the mean integrated squared error. Fast rates of convergence are obtained for a wide class of unknown functions. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/2014/195765 |