The Extendability of Cayley Graphs Generated by Transposition Trees
A connected graph Γ is k-extendable for a positive integer k if every matching M of size k can be extended to a perfect matching. The extendability number of Γ is the maximum k such that Γ is k-extendable. In this paper, we prove that Cayley graphs generated by transposition trees on {1,2,…,n} are (...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2022-05, Vol.10 (9), p.1575 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A connected graph Γ is k-extendable for a positive integer k if every matching M of size k can be extended to a perfect matching. The extendability number of Γ is the maximum k such that Γ is k-extendable. In this paper, we prove that Cayley graphs generated by transposition trees on {1,2,…,n} are (n−2)-extendable and determine that the extendability number is n−2 for an integer n≥3. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10091575 |