Unveiling the secrets of adeno-associated virus: novel high-throughput approaches for the quantification of multiple serotypes

Adeno-associated virus (AAV) vectors are among the most prominent viral vectors for in vivo gene therapy, and their investigation and development using high-throughput techniques have gained increasing interest. However, sample throughput remains a bottleneck in most analytical assays. In this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy. Methods & clinical development 2023-12, Vol.31, p.101118-101118, Article 101118
Hauptverfasser: Meierrieks, Frederik, Kour, Ahmad, Pätz, Marvin, Pflanz, Karl, Wolff, Michael W., Pickl, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adeno-associated virus (AAV) vectors are among the most prominent viral vectors for in vivo gene therapy, and their investigation and development using high-throughput techniques have gained increasing interest. However, sample throughput remains a bottleneck in most analytical assays. In this study, we compared commonly used analytical methods for AAV genome titer, capsid titer, and transducing titer determination with advanced methods using AAV2, AAV5, and AAV8 as representative examples. For the determination of genomic titers, we evaluated the suitability of qPCR and four different digital PCR methods and assessed the respective advantages and limitations of each method. We found that both ELISA and bio-layer interferometry provide comparable capsid titers, with bio-layer interferometry reducing the workload and having a 2.8-fold higher linear measurement range. Determination of the transducing titer demonstrated that live-cell analysis required less manual effort compared with flow cytometry. Both techniques had a similar linear range of detection, and no statistically significant differences in transducing titers were observed. This study demonstrated that the use of advanced analytical methods provides faster and more robust results while simultaneously increasing sample throughput and reducing active bench work time. [Display omitted] Meierrieks and colleagues investigated advanced methods in adeno-associated virus analytics that increase sample throughput while reducing workload and providing more robust results. The use of these methods allows deeper process insight and contributes to the advancement of novel gene therapeutics.
ISSN:2329-0501
2329-0501
DOI:10.1016/j.omtm.2023.101118