Shrinkage Methods for Estimating the Shape Parameter of the Generalized Pareto Distribution

The generalized Pareto distribution is one of the most important distributions in statistics of extremes as it has wide applications in fields such as finance, insurance, and hydrology. This study proposes two new methods for estimating the shape parameter of the generalized Pareto distribution (GPD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics 2023-11, Vol.2023, p.1-11
Hauptverfasser: Pels, Wilhemina Adoma, Adebanji, Atinuke O., Twumasi-Ankrah, Sampson, Minkah, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The generalized Pareto distribution is one of the most important distributions in statistics of extremes as it has wide applications in fields such as finance, insurance, and hydrology. This study proposes two new methods for estimating the shape parameter of the generalized Pareto distribution (GPD). The proposed methods use the shrinkage principle to adapt the existing empirical Bayesian with data-based prior and the likelihood moment method to obtain two estimators. The performance of the proposed estimators is compared with the existing estimators (i.e., maximum likelihood, likelihood moment estimators, etc.) for the shape parameter of the generalized Pareto distribution in a simulation study. The results show that the proposed estimators perform better for small to moderate number of exceedances in estimating shape parameter of the light-tailed distributions and competitive when estimating heavy-tailed distributions. The proposed estimators are illustrated with practical datasets from climate and insurance studies.
ISSN:1110-757X
1687-0042
DOI:10.1155/2023/9750638