Cascade AOA Estimation Algorithm Based on Flexible Massive Antenna Array

The Angle-of-Arrival (AOA) has a variety of applications in civilian and military wireless communication fields. Due to the rapid development of the location-based service (LBS) industry, the importance of the AOA estimation technique has increased. Although a large antenna array is necessary to est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-11, Vol.20 (23), p.6797
Hauptverfasser: Kim, Tae-Yun, Hwang, Suk-Seung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Angle-of-Arrival (AOA) has a variety of applications in civilian and military wireless communication fields. Due to the rapid development of the location-based service (LBS) industry, the importance of the AOA estimation technique has increased. Although a large antenna array is necessary to estimate accurate AOA information of many signals, the computational complexity of conventional AOA estimation algorithms, such as Multiple Signal Classification (MUSIC), is dramatically increased. In this paper, we propose a cascade AOA estimation algorithm employing CAPON and Beamspace MUSIC, based on a flexible (on/off) antenna array. First, this approach roughly finds AOA groups, including several signal AOAs using CAPON, by applying some of the antenna elements. Then, it estimates each signal AOA in the estimated AOA groups using Beamspace MUSIC by applying the full size of the antenna array. In addition to extremely low computational complexity, the proposed algorithm also has similar estimation performance to that of MUSIC. In particular, the proposed cascade AOA estimation algorithm is highly efficient when employing a massive antenna array. Representative computer simulation examples are provided to illustrate the AOA estimation performance of the proposed technique.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20236797