Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method

We used a tool of conventional Nikiforov-Uvarov method to determine bound state solutions of Schrodinger equation with quantum interaction potential called Hulthen-Yukawa inversely quadratic potential (HYIQP). We obtained the energy eigenvalues and the total normalized wave function. We employed Hel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in High Energy Physics 2017-01, Vol.2017 (2017), p.1-24
Hauptverfasser: Okon, Ituen B., Isonguyo, Cecilia N., Popoola, Oyebola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We used a tool of conventional Nikiforov-Uvarov method to determine bound state solutions of Schrodinger equation with quantum interaction potential called Hulthen-Yukawa inversely quadratic potential (HYIQP). We obtained the energy eigenvalues and the total normalized wave function. We employed Hellmann-Feynman Theorem (HFT) to compute expectation values r-2, r-1, T, and p2 for four different diatomic molecules: hydrogen molecule (H2), lithium hydride molecule (LiH), hydrogen chloride molecule (HCl), and carbon (II) oxide molecule. The resulting energy equation reduces to three well-known potentials which are as follows: Hulthen potential, Yukawa potential, and inversely quadratic potential. The bound state energies for Hulthen and Yukawa potentials agree with the result reported in existing literature. We obtained the numerical bound state energies of the expectation values by implementing MATLAB algorithm using experimentally determined spectroscopic constant for the different diatomic molecules. We developed mathematica programming to obtain wave function and probability density plots for different orbital angular quantum number.
ISSN:1687-7357
1687-7365
DOI:10.1155/2017/9671816