High-order tensor flow processing using integrated photonic circuits
Tensor analytics lays the mathematical basis for the prosperous promotion of multiway signal processing. To increase computing throughput, mainstream processors transform tensor convolutions into matrix multiplications to enhance the parallelism of computing. However, such order-reducing transformat...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-12, Vol.13 (1), p.7970-10, Article 7970 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tensor analytics lays the mathematical basis for the prosperous promotion of multiway signal processing. To increase computing throughput, mainstream processors transform tensor convolutions into matrix multiplications to enhance the parallelism of computing. However, such order-reducing transformation produces data duplicates and consumes additional memory. Here, we propose an integrated photonic tensor flow processor (PTFP) without digitally duplicating the input data. It outputs the convolved tensor as the input tensor ‘flows’ through the processor. The hybrid manipulation of optical wavelengths, space dimensions, and time delay steps, enables the direct representation and processing of high-order tensors in the optical domain. In the proof-of-concept experiment, an integrated processor manipulating wavelengths and delay steps is implemented for demonstrating the key functionalities of PTFP. The multi-channel images and videos are processed at the modulation rate of 20 Gbaud. A convolutional neural network for video action recognition is demonstrated on the processor, which achieves an accuracy of 97.9%.
Convolutional operation is a very efficient way to handle tensor analytics, but it consumes a large quantity of additional memory. Here, the authors demonstrate an integrated photonic tensor processor which directly handles high-order tensors without tensor-matrix transformation. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-35723-2 |