Common synaptic phenotypes arising from diverse mutations in the human NMDA receptor subunit GluN2A
Dominant mutations in the human gene GRIN2A , encoding NMDA receptor (NMDAR) subunit GluN2A, make a significant and growing contribution to the catalogue of published single-gene epilepsies. Understanding the disease mechanism in these epilepsy patients is complicated by the surprising diversity of...
Gespeichert in:
Veröffentlicht in: | Communications biology 2022-02, Vol.5 (1), p.174-174, Article 174 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dominant mutations in the human gene
GRIN2A
, encoding NMDA receptor (NMDAR) subunit GluN2A, make a significant and growing contribution to the catalogue of published single-gene epilepsies. Understanding the disease mechanism in these epilepsy patients is complicated by the surprising diversity of effects that the mutations have on NMDARs. Here we have examined the cell-autonomous effect of five GluN2A mutations, 3 loss-of-function and 2 gain-of-function, on evoked NMDAR-mediated synaptic currents (NMDA-EPSCs) in CA1 pyramidal neurons in cultured hippocampal slices. Despite the mutants differing in their functional incorporation at synapses, prolonged NMDA-EPSC current decays (with only marginal changes in charge transfer) were a common effect for both gain- and loss-of-function mutants. Modelling NMDA-EPSCs with mutant properties in a CA1 neuron revealed that the effect of
GRIN2A
mutations can lead to abnormal temporal integration and spine calcium dynamics during trains of concerted synaptic activity. Investigations beyond establishing the molecular defects of GluN2A mutants are much needed to understand their impact on synaptic transmission.
The cell-autonomous effect of five severe loss- or gain-of-function GluN2A (NMDA receptor) mutations is assessed on evoked NMDAR-mediated synaptic currents in CA1 pyramidal neurons in cultured mouse hippocampal slices. Data and modelling suggest that mutant-like NMDA-EPSCs can lead to abnormal temporal summation and spine calcium dynamics. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-022-03115-3 |