Study of the Effect of Surface Treatment on the Chloride Ion Transport at the Cementitious Spacer–Concrete Interface

Spacers are important components in reinforced concrete structures to provide cover between the steel reinforcement and the formwork. Cementitious spacers are of particular interest for coastal engineering structures, as they are compatible with cement-based chloride-resistant high-performance concr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-08, Vol.10 (15), p.5196
Hauptverfasser: Yang, Yibo, Huang, Chen, Guo, Wenying, Zhao, Hui, Li, Zhenjie, Li, Jiankuan, Bao, Jianyong, Wang, Hengchang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spacers are important components in reinforced concrete structures to provide cover between the steel reinforcement and the formwork. Cementitious spacers are of particular interest for coastal engineering structures, as they are compatible with cement-based chloride-resistant high-performance concrete compared to plastic and steel spacers. However, the cementitious spacer–concrete interface was found to be highly porous and microcracked. This study investigated the effect of surface treatment on the chloride ion transport at the cementitious spacer–concrete interface. A surface treatment technique for potential mass production was introduced and the state-of-practice tests of the hardened concrete were modified to evaluate the performance of the spacer–concrete composite specimens. The results showed that the surface treatment on a cementitious spacer improved the bonding between the spacer and concrete at the interface. The surface treatment of the spacer improved the compressive strength and the chloride resistance of the composite specimen locally compared to those without surface treatment. The advantage of surface treatment on the chloride resistance was partially represented in either the diffusion coefficient or the column electric flux. The maximum chloride ion penetration depth at the spacer–concrete interface was recommended as an additional proxy for the evaluation of the chloride resistance performance of composite specimens.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10155196