Mathematical and Experimental Model of Neuronal Oscillator Based on Memristor-Based Nonlinearity

This article presents a mathematical and experimental model of a neuronal oscillator with memristor-based nonlinearity. The mathematical model describes the dynamics of an electronic circuit implementing the FitzHugh–Nagumo neuron model. A nonlinear component of this circuit is the Au/Zr/ZrO2(Y)/TiN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-03, Vol.11 (5), p.1268
Hauptverfasser: Kipelkin, Ivan, Gerasimova, Svetlana, Guseinov, Davud, Pavlov, Dmitry, Vorontsov, Vladislav, Mikhaylov, Alexey, Kazantsev, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a mathematical and experimental model of a neuronal oscillator with memristor-based nonlinearity. The mathematical model describes the dynamics of an electronic circuit implementing the FitzHugh–Nagumo neuron model. A nonlinear component of this circuit is the Au/Zr/ZrO2(Y)/TiN/Ti memristive device. This device is fabricated on the oxidized silicon substrate using magnetron sputtering. The circuit with such nonlinearity is described by a three-dimensional ordinary differential equation system. The effect of the appearance of spontaneous self-oscillations is investigated. A bifurcation scenario based on supercritical Andronov–Hopf bifurcation is found. The dependence of the critical point on the system parameters, particularly on the size of the electrode area, is analyzed. The self-oscillating and excitable modes are experimentally demonstrated.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11051268