A type VII-secreted lipase toxin with reverse domain arrangement

The type VII protein secretion system (T7SS) is found in many Gram-positive bacteria and in pathogenic mycobacteria. All T7SS substrate proteins described to date share a common helical domain architecture at the N-terminus that typically interacts with other helical partner proteins, forming a comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-12, Vol.14 (1), p.8438-16, Article 8438
Hauptverfasser: Garrett, Stephen R., Mietrach, Nicole, Deme, Justin, Bitzer, Alina, Yang, Yaping, Ulhuq, Fatima R., Kretschmer, Dorothee, Heilbronner, Simon, Smith, Terry K., Lea, Susan M., Palmer, Tracy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The type VII protein secretion system (T7SS) is found in many Gram-positive bacteria and in pathogenic mycobacteria. All T7SS substrate proteins described to date share a common helical domain architecture at the N-terminus that typically interacts with other helical partner proteins, forming a composite signal sequence for targeting to the T7SS. The C-terminal domains are functionally diverse and in Gram-positive bacteria such as Staphylococcus aureus often specify toxic anti-bacterial activity. Here we describe the first example of a class of T7 substrate, TslA, that has a reverse domain organisation. TslA is widely found across Bacillota including Staphylococcus , Enterococcus and Listeria . We show that the S. aureus TslA N-terminal domain is a phospholipase A with anti-staphylococcal activity that is neutralised by the immunity lipoprotein TilA. Two small helical partner proteins, TlaA1 and TlaA2 are essential for T7-dependent secretion of TslA and at least one of these interacts with the TslA C-terminal domain to form a helical stack. Cryo-EM analysis of purified TslA complexes indicate that they share structural similarity with canonical T7 substrates. Our findings suggest that the T7SS has the capacity to recognise a secretion signal present at either end of a substrate. Here Garrett et al . describe a toxin, TslA, secreted by type VII secretion system that has a reverse domain arrangement compared to other previously characterised substrates. The authors show that TslA is a lipase with antibacterial activity.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-44221-y