Evaluating an enhanced thermal response test (ETRT) with high groundwater flow

Enhanced thermal response tests (ETRT) enable the evaluation of depth-specific effective thermal conductivities. Groundwater flow can significantly influence the interpretation of ETRT results. Hence, this study aims to critically evaluate an ETRT with high groundwater flow (> 0.2 m d −1 ). Diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geothermal Energy 2024-12, Vol.12 (1), p.1-22, Article 1
Hauptverfasser: Albers, Anna, Steger, Hagen, Zorn, Roman, Blum, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enhanced thermal response tests (ETRT) enable the evaluation of depth-specific effective thermal conductivities. Groundwater flow can significantly influence the interpretation of ETRT results. Hence, this study aims to critically evaluate an ETRT with high groundwater flow (> 0.2 m d −1 ). Different approaches in determining the specific heat load of an ETRT are compared. The results show that assuming constant electrical resistance of the heating cable with time can account for an inaccuracy of 12% in the determination of effective thermal conductivities. Adjusting the specific heat loads along the borehole heat exchanger (BHE) depth, the specific heat loads vary within 3%. Applying the infinite line source model (ILS) and Péclet number analysis, a depth–average hydraulic conductivity is estimated to be 3.1 × 10 –3  m s −1 , thereby, confirming the results of a pumping test of a previous study. For high Darcy velocities (> 0.6 m d −1 ), the uncertainty is higher due to experimental limitations in ensuring a sufficient temperature increase for the evaluation (ΔT > 0.6 K). In these depths, the convergence criterion of Δ λ eff / λ eff  
ISSN:2195-9706
2195-9706
DOI:10.1186/s40517-023-00278-y