Phosphorylation of Kapok Fiber with Phytic Acid for Enhanced Flame Retardancy
Kapok fiber (KF), with the characteristics of a natural hollow structure, light weight, and low density, can be used as acoustic and thermal insulation, buoyancy, adsorption, filling, and composite material. The flame-retardant treatment can expand the functionality and application of KF. In this wo...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-11, Vol.23 (23), p.14950 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Kapok fiber (KF), with the characteristics of a natural hollow structure, light weight, and low density, can be used as acoustic and thermal insulation, buoyancy, adsorption, filling, and composite material. The flame-retardant treatment can expand the functionality and application of KF. In this work, the phosphorylation of KF using phytic acid (PA) in the presence of urea at a high temperature was used to enhance its flame retardancy. The phosphorylation reaction conditions were discussed, and the surface topography, thermal degradation, heat release, and combustion properties of phosphorylated KF were studied. The Fourier transform infrared spectroscopy and
P solid-state nuclear magnetic resonance spectroscopy analyses confirmed the grafting of PA on cellulose by the formation of phosphate ester bonds. Due to the covalent binding of PA, phosphorylated KF exhibited good washing durability. The surface topography, Raman spectroscopy, thermogravimetric (TG), and microcalorimetry analyses revealed the excellent charring ability of phosphorylated KF. In the TG test in nitrogen, the char residue increased to 42.6% of phosphorylated KF from 8.3% of raw KF at 700 °C. In the vertical combustion, raw KF sheet was almost completely burned out within 30 s, while phosphorylated KF was very difficult to catch fire. In the microcalorimetry analysis, the heat release capacity and total heat release of phosphorylated KF decreased to 67 J/g∙K and 3.9 kJ/g, respectively from 237 J/g∙K and 18.1 kJ/g of raw KF. This work suggests that phosphorylated KF is an excellent flame-retardant material. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms232314950 |