Parameter-Free Shape Optimization: Various Shape Updates for Engineering Applications

In the last decade, parameter-free approaches to shape optimization problems have matured to a state where they provide a versatile tool for complex engineering applications. However, sensitivity distributions obtained from shape derivatives in this context cannot be directly used as a shape update...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace 2023-09, Vol.10 (9), p.751
Hauptverfasser: Radtke, Lars, Bletsos, Georgios, Kühl, Niklas, Suchan, Tim, Rung, Thomas, Düster, Alexander, Welker, Kathrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the last decade, parameter-free approaches to shape optimization problems have matured to a state where they provide a versatile tool for complex engineering applications. However, sensitivity distributions obtained from shape derivatives in this context cannot be directly used as a shape update in gradient-based optimization strategies. Instead, an auxiliary problem has to be solved to obtain a gradient from the sensitivity. While several choices for these auxiliary problems were investigated mathematically, the complexity of the concepts behind their derivation has often prevented their application in engineering. This work aims to explain several approaches to compute shape updates from an engineering perspective. We introduce the corresponding auxiliary problems in a formal way and compare the choices by means of numerical examples. To this end, a test case and exemplary applications from computational fluid dynamics are considered.
ISSN:2226-4310
2226-4310
DOI:10.3390/aerospace10090751