Remote Sensing Monitoring of Drought in Southwest China Using Random Forest and eXtreme Gradient Boosting Methods
A drought results from the combined action of several factors. The continuous progress of remote sensing technology and the rapid development of artificial intelligence technology have enabled the use of multisource remote sensing data and data-driven machine learning (ML) methods to mine drought fe...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-10, Vol.15 (19), p.4840 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A drought results from the combined action of several factors. The continuous progress of remote sensing technology and the rapid development of artificial intelligence technology have enabled the use of multisource remote sensing data and data-driven machine learning (ML) methods to mine drought features from different perspectives. This method improves the generalization ability and accuracy of drought monitoring and prediction models. The present study focused on drought monitoring in southwest China, where drought disasters occur frequently and with a high intensity, especially in areas with limited meteorological station coverage. Several drought indices were calculated based on multisource satellite remote sensing data and weather station observation data. Remote sensing data from multiple sources were combined to build a reconstructed land surface temperature (LST) and drought monitoring method using the two different ML methods of random forest (RF) and eXtreme Gradient Boosting (XGBoost 1.5.1), respectively. A 5-fold cross-validation (CV) method was used for the model’s hyperparameter optimization and accuracy evaluation. The performance of the model was also assessed and validated using several accuracy assessment indicators. The model monitored the results of the spatial and temporal distributions of the drought, drought grades, and influence scope of the drought. These results from the model were compared against historical drought situations and those based on the standardized precipitation evapotranspiration index (SPEI) and the meteorological drought composite index (MCI) values estimated using weather station observation data in southwest China. The results show that the average score of the 5-fold CV for the RF and XGBoost was 0.955 and 0.931, respectively. The root-mean-square error (RMSE) of the LST values reconstructed using the RF model on the training and test sets was 1.172 and 2.236, the mean absolute error (MAE) was 0.847 and 1.719, and the explained variance score (EVS) was 0.901 and 0.858, respectively. Furthermore, the correlation coefficients (CCs) were all greater than 0.9. The RMSE of the monitoring values using the XGBoost model on the training and test sets was 0.135 and 0.435, the MAE was 0.095 and 0.328, the EVS was 0.976 and 0.782, and the CC was 0.982 and 0.868, respectively. The consistency rate between the drought grades identified using SPEI1 (the SPEI values of the 1-month scale) based on the observed data from the |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15194840 |