A comparative proteomics study of Arabidopsis thaliana responding to the coexistence of BPA and TiO2-NPs at environmentally relevant concentrations

Through the applications of recycling sewage sludge to soils as nutrients, bisphenol A (BPA) and titanium dioxide nanoparticles (TiO2-NPs) are commonly found in the agricultural environment. Previous studies have reported that BPA and nanoparticles are harmful to the environment. However, the combin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2022-08, Vol.241, p.113800-113800, Article 113800
Hauptverfasser: Huang, Huiming, Grajeda, Brian, Ellis, Cameron C., Estevao, Igor L., Lee, Wen-Yee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Through the applications of recycling sewage sludge to soils as nutrients, bisphenol A (BPA) and titanium dioxide nanoparticles (TiO2-NPs) are commonly found in the agricultural environment. Previous studies have reported that BPA and nanoparticles are harmful to the environment. However, the combined toxicity of both compounds is not yet understood. This work presented an in-depth proteomic analysis of Arabidopsis thaliana exposed to BPA and TiO2-NPs concurrently at environmentally relevant levels. Seeds were simultaneously treated with varying concentrations of BPA (0, 10, 100, and 1000 µg·kg-1) and TiO2-NPs (0, 1, 10 and 100 mg·kg-1). In treatment of 1000 µg·kg-1 BPA and 100 mg·kg-1 TiO2-NPs, highest seed germination rate (87.97%, p < 0.05) was observed. Shorter primary roots but more branched roots were obtained in treatments of high BPA and NPs concentrations (100, 1000 µg·kg-1 BPA and 10, 100 mg·kg-1 TiO2-NPs) while no significant effects on plant height and biomass were found. In the comparative analysis, both concentration related positive and negative effects were observed, such as regulation of cell proliferation (positive), root hair elongation (positive), cellular response to oxidative stress (negative), and cell wall organization (negative). In response to the stress caused by BPA and TiO2-NPs, some proteins related to plant root development, such as CD48E, DNAJ2 and GL24, were up-regulated explaining the shorter primary root length and more branched roots. Moreover, Arabidopsis may have stimulated its ability of resource transportation and energy metabolism to overcome the stress and maintain or somehow enhance their growth by up-regulating proteins like TBB6, CALM1, RAA2A, G3PP2 and KASC1. Our comparative proteomics analysis also highlighted multiple biological processes that consequently lead to the stability of plant growth and its stress adaptation. The results demonstrated that applying biosolids to soil as a fertilizer may be considered as a sustainable practice.Through the applications of recycling sewage sludge to soils as nutrients, bisphenol A (BPA) and titanium dioxide nanoparticles (TiO2-NPs) are commonly found in the agricultural environment. Previous studies have reported that BPA and nanoparticles are harmful to the environment. However, the combined toxicity of both compounds is not yet understood. This work presented an in-depth proteomic analysis of Arabidopsis thaliana exposed to BPA and TiO2-NPs concurrently at environment
ISSN:0147-6513
1090-2414
1090-2414
DOI:10.1016/j.ecoenv.2022.113800