Networked Cluster Formation via Trigonal Lipid Modules for Augmented Ex Vivo NK Cell Priming
Current cytokine-based natural killer (NK) cell priming techniques have exhibited limitations such as the deactivation of biological signaling molecules and subsequent insufficient maturation of the cell population during mass cultivation processes. In this study, we developed an amphiphilic trigona...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-02, Vol.25 (3), p.1556 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current cytokine-based natural killer (NK) cell priming techniques have exhibited limitations such as the deactivation of biological signaling molecules and subsequent insufficient maturation of the cell population during mass cultivation processes. In this study, we developed an amphiphilic trigonal 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) lipid-polyethylene glycol (PEG) material to assemble NK cell clusters via multiple hydrophobic lipid insertions into cellular membranes. Our lipid conjugate-mediated ex vivo NK cell priming sufficiently augmented the structural modulation of clusters, facilitated diffusional signal exchanges, and finally activated NK cell population with the clusters. Without any inhibition in diffusional signal exchanges and intrinsic proliferative efficacy of NK cells, effectively prime NK cell clusters produced increased interferon-gamma, especially in the early culture periods. In conclusion, the present study demonstrates that our novel lipid conjugates could serve as a promising alternative for future NK cell mass production. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms25031556 |