Digital Mapping of Soil Particle Size Fractions in the Loess Plateau, China, Using Environmental Variables and Multivariate Random Forest

Soil particle size fractions (PSFs) are important properties for understanding the physical and chemical processes in soil systems. Knowledge about the distribution of soil PSFs is critical for sustainable soil management. Although log-ratio transformations have been widely applied to soil PSFs pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-03, Vol.16 (5), p.785
Hauptverfasser: He, Wenjie, Xiao, Zhiwei, Lu, Qikai, Wei, Lifei, Liu, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil particle size fractions (PSFs) are important properties for understanding the physical and chemical processes in soil systems. Knowledge about the distribution of soil PSFs is critical for sustainable soil management. Although log-ratio transformations have been widely applied to soil PSFs prediction, the statistical distribution of original data and the transformed data given by log-ratio transformations is different, resulting in biased estimates of soil PSFs. Therefore, multivariate random forest (MRF) was utilized for the simultaneous prediction of soil PSFs, as it is able to capture dependencies and internal relations among the three components. Specifically, 243 soil samples collected across the Loess Plateau were used. Meanwhile, Landsat data, terrain attributes, and climatic variables were employed as environmental variables for spatial prediction of soil PSFs. The results depicted that MRF gave satisfactory soil PSF prediction performance, where the R2 values were 0.62, 0.53, and 0.73 for sand, silt, and clay, respectively. Among the environmental variables, nighttime land surface temperature (LST_N) presented the highest importance in predicting soil PSFs in the Loess Plateau, China. Maps of soil PSFs and texture were generated at a 30 m resolution, which can be utilized as alternative data for soil erosion management and ecosystem conservation.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16050785