Microbiome-derived metabolites in early to mid-pregnancy and risk of gestational diabetes: a metabolome-wide association study

Pre-diagnostic disturbances in the microbiome-derived metabolome have been associated with an increased risk of diabetes in non-pregnant populations. However, the roles of microbiome-derived metabolites, the end-products of microbial metabolism, in gestational diabetes (GDM) remain understudied. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC medicine 2024-10, Vol.22 (1), p.449-12, Article 449
Hauptverfasser: Susarla, Sita Manasa, Fiehn, Oliver, Thiele, Ines, Ngo, Amanda L, Barupal, Dinesh K, Chehab, Rana F, Ferrara, Assiamira, Zhu, Yeyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pre-diagnostic disturbances in the microbiome-derived metabolome have been associated with an increased risk of diabetes in non-pregnant populations. However, the roles of microbiome-derived metabolites, the end-products of microbial metabolism, in gestational diabetes (GDM) remain understudied. We examined the prospective association of microbiome-derived metabolites in early to mid-pregnancy with GDM risk in a diverse population. We conducted a prospective discovery and validation study, including a case-control sample of 91 GDM and 180 non-GDM individuals within the multi-racial/ethnic The Pregnancy Environment and Lifestyle Study (PETALS) as the discovery set, a random sample from the PETALS (42 GDM, 372 non-GDM) as validation set 1, and a case-control sample (35 GDM, 70 non-GDM) from the Gestational Weight Gain and Optimal Wellness randomized controlled trial as validation set 2. We measured untargeted fasting serum metabolomics at gestational weeks (GW) 10-13 and 16-19 by gas chromatography/time-of-flight mass spectrometry (TOF-MS), liquid chromatography (LC)/quadrupole TOF-MS, and hydrophilic interaction LC/quadrupole TOF-MS. GDM was diagnosed using the 3-h, 100-g oral glucose tolerance test according to the Carpenter-Coustan criteria around GW 24-28. Among 1362 annotated compounds, we identified 140 of gut microbiome metabolism origin. Multivariate enrichment analysis illustrated that carbocyclic acids and branched-chain amino acid clusters at GW 10-13 and the unsaturated fatty acids cluster at GW 16-19 were positively associated with GDM risk (FDR 
ISSN:1741-7015
1741-7015
DOI:10.1186/s12916-024-03606-6