A systematic evaluation of nucleotide properties for CRISPR sgRNA design
CRISPR is a versatile gene editing tool which has revolutionized genetic research in the past few years. Optimizing sgRNA design to improve the efficiency of target/DNA cleavage is critical to ensure the success of CRISPR screens. By borrowing knowledge from oligonucleotide design and nucleosome occ...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2017-06, Vol.18 (1), p.297-297, Article 297 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CRISPR is a versatile gene editing tool which has revolutionized genetic research in the past few years. Optimizing sgRNA design to improve the efficiency of target/DNA cleavage is critical to ensure the success of CRISPR screens.
By borrowing knowledge from oligonucleotide design and nucleosome occupancy models, we systematically evaluated candidate features computed from a number of nucleic acid, thermodynamic and secondary structure models on real CRISPR datasets. Our results showed that taking into account position-dependent dinucleotide features improved the design of effective sgRNAs with area under the receiver operating characteristic curve (AUC) >0.8, and the inclusion of additional features offered marginal improvement (∼2% increase in AUC).
Using a machine-learning approach, we proposed an accurate prediction model for sgRNA design efficiency. An R package predictSGRNA implementing the predictive model is available at http://www.ams.sunysb.edu/~pfkuan/softwares.html#predictsgrna . |
---|---|
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-017-1697-6 |