Magnetoresistive-coupled transistor using the Weyl semimetal NbP

Semiconductor transistors operate by modulating the charge carrier concentration of a channel material through an electric field coupled by a capacitor. This mechanism is constrained by the fundamental transport physics and material properties of such devices—attenuation of the electric field, and l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-01, Vol.15 (1), p.710-8, Article 710
Hauptverfasser: Rocchino, Lorenzo, Balduini, Federico, Schmid, Heinz, Molinari, Alan, Luisier, Mathieu, Süß, Vicky, Felser, Claudia, Gotsmann, Bernd, Zota, Cezar B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiconductor transistors operate by modulating the charge carrier concentration of a channel material through an electric field coupled by a capacitor. This mechanism is constrained by the fundamental transport physics and material properties of such devices—attenuation of the electric field, and limited mobility and charge carrier density in semiconductor channels. In this work, we demonstrate a new type of transistor that operates through a different mechanism. The channel material is a Weyl semimetal, NbP, whose resistivity is modulated via a magnetic field generated by an integrated superconductor. Due to the exceptionally large electron mobility of this material, which reaches over 1,000,000 cm 2 /Vs, and the strong magnetoresistive coupling, the transistor can generate significant transconductance amplification at nanowatt levels of power. This type of device can enable new low-power amplifiers, suitable for qubit readout operation in quantum computers. L. Rocchino et al. experimentally demonstrate a magnetic field effect transistor based on the Weyl semimetal NbP as the active channel material. A gate magnetic field is generated by current flowing in an integrated superconductor NbN. The device operation relies on the extreme magnetoresistance of the NbP.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-44961-5