A Room Temperature ZnO-NPs/MEMS Ammonia Gas Sensor
This study uses ultrasonic grinding to grind ZnO powder to 10−20-nanometer nanoparticles (NPs), and these are integrated with a MEMS structure to form a ZnO-NPs/MEMS gas sensor. Measuring 1 ppm NH3 gas and operating at room temperature, the sensor response for the ZnO-NPs/MEMS gas sensor is around 3...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-09, Vol.12 (19), p.3287 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study uses ultrasonic grinding to grind ZnO powder to 10−20-nanometer nanoparticles (NPs), and these are integrated with a MEMS structure to form a ZnO-NPs/MEMS gas sensor. Measuring 1 ppm NH3 gas and operating at room temperature, the sensor response for the ZnO-NPs/MEMS gas sensor is around 39.7%, but the origin-ZnO powder/MEMS gas sensor is fairly unresponsive. For seven consecutive cycles, the ZnO-NPs/MEMS gas sensor has an average sensor response of about 40% and an inaccuracy of |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano12193287 |