The existence of periodic solutions for a second order nonlinear neutral differential equation with functional delay

In this article we study the existence of periodic solutions of the second order nonlinear neutral differential equation with functional delay \[ \frac{d^{2}}{dt^{2}}x\left( t\right) +p\left( t\right) \frac{d}{dt}x\left( t\right) +q\left( t\right) x^{3}\left( t\right) = \frac{d}{dt}g\left( t,x\left(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of qualitative theory of differential equations 2012-01, Vol.2012 (31), p.1-9
Hauptverfasser: Ardjouni, Abdelouaheb, Djoudi, Ahcéne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we study the existence of periodic solutions of the second order nonlinear neutral differential equation with functional delay \[ \frac{d^{2}}{dt^{2}}x\left( t\right) +p\left( t\right) \frac{d}{dt}x\left( t\right) +q\left( t\right) x^{3}\left( t\right) = \frac{d}{dt}g\left( t,x\left( t-\tau\left( t\right) \right) \right) +f\left( t,x^{3}\left( t\right) ,x^{3}\left( t-\tau\left( t\right) \right)\right). \] The main tool employed here is the Burton-Krasnoselskii's hybrid fixed point theorem dealing with a sum of two mappings, one is a large contraction and the other is compact.
ISSN:1417-3875
1417-3875
DOI:10.14232/ejqtde.2012.1.31