The existence of periodic solutions for a second order nonlinear neutral differential equation with functional delay
In this article we study the existence of periodic solutions of the second order nonlinear neutral differential equation with functional delay \[ \frac{d^{2}}{dt^{2}}x\left( t\right) +p\left( t\right) \frac{d}{dt}x\left( t\right) +q\left( t\right) x^{3}\left( t\right) = \frac{d}{dt}g\left( t,x\left(...
Gespeichert in:
Veröffentlicht in: | Electronic journal of qualitative theory of differential equations 2012-01, Vol.2012 (31), p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we study the existence of periodic solutions of the second order nonlinear neutral differential equation with functional delay \[ \frac{d^{2}}{dt^{2}}x\left( t\right) +p\left( t\right) \frac{d}{dt}x\left( t\right) +q\left( t\right) x^{3}\left( t\right) = \frac{d}{dt}g\left( t,x\left( t-\tau\left( t\right) \right) \right) +f\left( t,x^{3}\left( t\right) ,x^{3}\left( t-\tau\left( t\right) \right)\right). \] The main tool employed here is the Burton-Krasnoselskii's hybrid fixed point theorem dealing with a sum of two mappings, one is a large contraction and the other is compact. |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2012.1.31 |