Solution of linear correlated fuzzy differential equations in the linear correlated fuzzy spaces
Linear correlated fuzzy differential equations (LCFDEs) are a valuable approach to handling physical problems, optimizations problems, linear programming problems etc. with uncertainty. But, LCFDEs employed on spaces with symmetric basic fuzzy numbers often exhibit multiple solutions due to the exte...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2024-01, Vol.9 (2), p.2695-2721 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Linear correlated fuzzy differential equations (LCFDEs) are a valuable approach to handling physical problems, optimizations problems, linear programming problems etc. with uncertainty. But, LCFDEs employed on spaces with symmetric basic fuzzy numbers often exhibit multiple solutions due to the extension process. This abundance of solutions poses challenges in the existing literature's solution methods for LCFDEs. These limitations have led to reduced applicability of LCFDEs in dealing with such types of problems. Therefore, in the current study, we focus on establishing existence and uniqueness results for LCFDEs. Moreover, we will discuss solutions in the canonical form of LCFDEs in the space of symmetric basic fuzzy number which is currently absent in the literature. To enhance the practicality of our work, we provide examples and plots to illustrate our findings. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2024134 |