Drug-target interaction prediction using unifying of graph regularized nuclear norm with bilinear factorization

Wet-lab experiments for identification of interactions between drugs and target proteins are time-consuming, costly and labor-intensive. The use of computational prediction of drug-target interactions (DTIs), which is one of the significant points in drug discovery, has been considered by many resea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2021-11, Vol.22 (1), p.555-23, Article 555
Hauptverfasser: Sorkhi, Ali Ghanbari, Abbasi, Zahra, Mobarakeh, Majid Iranpour, Pirgazi, Jamshid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wet-lab experiments for identification of interactions between drugs and target proteins are time-consuming, costly and labor-intensive. The use of computational prediction of drug-target interactions (DTIs), which is one of the significant points in drug discovery, has been considered by many researchers in recent years. It also reduces the search space of interactions by proposing potential interaction candidates. In this paper, a new approach based on unifying matrix factorization and nuclear norm minimization is proposed to find a low-rank interaction. In this combined method, to solve the low-rank matrix approximation, the terms in the DTI problem are used in such a way that the nuclear norm regularized problem is optimized by a bilinear factorization based on Rank-Restricted Soft Singular Value Decomposition (RRSSVD). In the proposed method, adjacencies between drugs and targets are encoded by graphs. Drug-target interaction, drug-drug similarity, target-target, and combination of similarities have also been used as input. The proposed method is evaluated on four benchmark datasets known as Enzymes (E), Ion channels (ICs), G protein-coupled receptors (GPCRs) and nuclear receptors (NRs) based on AUC, AUPR, and time measure. The results show an improvement in the performance of the proposed method compared to the state-of-the-art techniques.
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-021-04464-2