Approaches for Long Lifetime Organic Light Emitting Diodes

Organic light emitting diodes (OLEDs) have been well known for their potential usage in the lighting and display industry. The device efficiency and lifetime have improved considerably in the last three decades. However, for commercial applications, operational lifetime still lies as one of the loom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2021-01, Vol.8 (1), p.2002254-n/a
Hauptverfasser: Sudheendran Swayamprabha, Sujith, Dubey, Deepak Kumar, Shahnawaz, Yadav, Rohit Ashok Kumar, Nagar, Mangey Ram, Sharma, Aayushi, Tung, Fu‐Ching, Jou, Jwo‐Huei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic light emitting diodes (OLEDs) have been well known for their potential usage in the lighting and display industry. The device efficiency and lifetime have improved considerably in the last three decades. However, for commercial applications, operational lifetime still lies as one of the looming challenges. In this review paper, an in‐depth description of the various factors which affect OLED lifetime, and the related solutions is attempted to be consolidated. Notably, all the known intrinsic and extrinsic degradation phenomena and failure mechanisms, which include the presence of dark spot, high heat during device operation, substrate fracture, downgrading luminance, moisture attack, oxidation, corrosion, electron induced migrations, photochemical degradation, electrochemical degradation, electric breakdown, thermomechanical failures, thermal breakdown/degradation, and presence of impurities within the materials and evaporator chamber are reviewed. Light is also shed on the materials and device structures which are developed in order to obtain along with developed materials and device structures to obtain stable devices. It is believed that the theme of this report, summarizing the knowledge of mechanisms allied with OLED degradation, would be contributory in developing better‐quality OLED materials and, accordingly, longer lifespan devices. This work provides an in‐depth overview of the state of art of stability of organic light emitting diodes and covers important degradation issues involved in this technology. Several intrinsic and extrinsic degradation mechanisms within the materials and evaporator chambers are thoroughly analyzed and discussed.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202002254