The spectrum of discrete Dirac operator with a general boundary condition
In this paper, we aim to investigate the spectrum of the nonselfadjoint operator L generated in the Hilbert space l 2 ( N , C 2 ) by the discrete Dirac system { y n + 1 ( 2 ) − y n ( 2 ) + p n y n ( 1 ) = λ y n ( 1 ) , − y n ( 1 ) + y n − 1 ( 1 ) + q n y n ( 2 ) = λ y n ( 2 ) , n ∈ N , and the gener...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2020-08, Vol.2020 (1), p.1-9, Article 409 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we aim to investigate the spectrum of the nonselfadjoint operator
L
generated in the Hilbert space
l
2
(
N
,
C
2
)
by the discrete Dirac system
{
y
n
+
1
(
2
)
−
y
n
(
2
)
+
p
n
y
n
(
1
)
=
λ
y
n
(
1
)
,
−
y
n
(
1
)
+
y
n
−
1
(
1
)
+
q
n
y
n
(
2
)
=
λ
y
n
(
2
)
,
n
∈
N
,
and the general boundary condition
∑
n
=
0
∞
h
n
y
n
=
0
,
where
λ
is a spectral parameter, Δ is the forward difference operator, (
h
n
) is a complex vector sequence such that
h
n
=
(
h
n
(
1
)
,
h
n
(
2
)
)
, where
h
n
(
i
)
∈
l
1
(
N
)
∩
l
2
(
N
)
,
i
=
1
,
2
, and
h
0
(
1
)
≠
0
. Upon determining the sets of eigenvalues and spectral singularities of
L
, we prove that, under certain conditions,
L
has a finite number of eigenvalues and spectral singularities with finite multiplicity. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-020-02851-2 |