Biased support vector machine and weighted-smote in handling class imbalance problem

Class imbalance occurs when instances in a class are much higher than in other classes. This machine learning major problem can affect the predicted accuracy. Support Vector Machine (SVM) is robust and precise method in handling class imbalance problem but weak in the bias data distribution, Biased...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advances in intelligent informatics 2018-03, Vol.4 (1), p.21-27
Hauptverfasser: Hartono, Hartono, Sitompul, Opim Salim, Tulus, Tulus, Nababan, Erna Budhiarti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Class imbalance occurs when instances in a class are much higher than in other classes. This machine learning major problem can affect the predicted accuracy. Support Vector Machine (SVM) is robust and precise method in handling class imbalance problem but weak in the bias data distribution, Biased Support Vector Machine (BSVM) became popular choice to solve the problem. BSVM provide better control sensitivity yet lack accuracy compared to general SVM. This study proposes the integration of BSVM and SMOTEBoost to handle class imbalance problem. Non Support Vector (NSV) sets from negative samples and Support Vector (SV) sets from positive samples will undergo a Weighted-SMOTE process. The results indicate that implementation of Biased Support Vector Machine and Weighted-SMOTE achieve better accuracy and sensitivity.
ISSN:2442-6571
2442-6571
DOI:10.26555/ijain.v4i1.146