MOLECULAR MECHANISMS OF INTRAVASCULAR INHIBITION AND STIMULATION OF EXTRAVASCULAR THROMBOSIS
The hemostasis system is designed to maintain a balance between the processes of blood clotting, anticoagulation, as well as fibrinolysis, to ensure constant effective blood circulation in the body and rapid cessation of bleeding in the event of their occurrence. The procoagulant potential of the he...
Gespeichert in:
Veröffentlicht in: | Biotechnologia acta 2021-12, Vol.14 (6), p.5-22 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hemostasis system is designed to maintain a balance between the processes of blood clotting, anticoagulation, as well as fibrinolysis, to ensure constant effective blood circulation in the body and rapid cessation of bleeding in the event of their occurrence. The procoagulant potential of the hemostasis system is based on molecular mechanisms that lead to the formation of fibrin in the bloodstream, which is the framework of the thrombus, and to the aggregation of platelets — the basis of the thrombus body. The anticoagulant potential of blood plasma is provided by mechanisms aimed at inhibiting blood coagulation processes. Thorough study and understanding of these mechanisms will open up numerous treatments for pathologies associated with both intravascular thrombosis and bleeding of various origins. The purpose of this review is to analyze ways to prevent intravascular thrombosis and stimulate extravascular thrombosis. The review describes and analyzes available and promising means of thrombosis prevention, in particular, direct and indirect anticoagulants and antiplatelets, as well as methods of effective stimulation of thrombosis, which is necessary in case of vascular damage. The result of this analysis is to determine the nodal points of the protein network of the hemostasis system, the action of which by specific molecular effectors will control the process of thrombosis. |
---|---|
ISSN: | 2410-7751 2410-776X |
DOI: | 10.15407/biotech14.06.005 |