Lie Symmetry Analysis, Exact Solutions, and Conservation Laws of Variable-Coefficients Boiti-Leon-Pempinelli Equation
In this article, we study the generalized (2+1)-dimensional variable-coefficients Boiti-Leon-Pempinelli (vcBLP) equation. Using Lie’s invariance infinitesimal criterion, equivalence transformations and differential invariants are derived. Applying differential invariants to construct an explicit tra...
Gespeichert in:
Veröffentlicht in: | Advances in Mathematical Physics 2021-11, Vol.2021, p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study the generalized (2+1)-dimensional variable-coefficients Boiti-Leon-Pempinelli (vcBLP) equation. Using Lie’s invariance infinitesimal criterion, equivalence transformations and differential invariants are derived. Applying differential invariants to construct an explicit transformation that makes vcBLP transform to the constant coefficient form, then transform to the well-known Burgers equation. The infinitesimal generators of vcBLP are obtained using the Lie group method; then, the optimal system of one-dimensional subalgebras is determined. According to the optimal system, the (1+1)-dimensional reduced partial differential equations (PDEs) are obtained by similarity reductions. Through G′/G-expansion method leads to exact solutions of vcBLP and plots the corresponding 3-dimensional figures. Subsequently, the conservation laws of vcBLP are determined using the multiplier method. |
---|---|
ISSN: | 1687-9120 1687-9139 |
DOI: | 10.1155/2021/6227384 |