Lie Symmetry Analysis, Exact Solutions, and Conservation Laws of Variable-Coefficients Boiti-Leon-Pempinelli Equation

In this article, we study the generalized (2+1)-dimensional variable-coefficients Boiti-Leon-Pempinelli (vcBLP) equation. Using Lie’s invariance infinitesimal criterion, equivalence transformations and differential invariants are derived. Applying differential invariants to construct an explicit tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Mathematical Physics 2021-11, Vol.2021, p.1-14
Hauptverfasser: Zhang, Feng, Hu, Yuru, Xin, Xiangpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we study the generalized (2+1)-dimensional variable-coefficients Boiti-Leon-Pempinelli (vcBLP) equation. Using Lie’s invariance infinitesimal criterion, equivalence transformations and differential invariants are derived. Applying differential invariants to construct an explicit transformation that makes vcBLP transform to the constant coefficient form, then transform to the well-known Burgers equation. The infinitesimal generators of vcBLP are obtained using the Lie group method; then, the optimal system of one-dimensional subalgebras is determined. According to the optimal system, the (1+1)-dimensional reduced partial differential equations (PDEs) are obtained by similarity reductions. Through G′/G-expansion method leads to exact solutions of vcBLP and plots the corresponding 3-dimensional figures. Subsequently, the conservation laws of vcBLP are determined using the multiplier method.
ISSN:1687-9120
1687-9139
DOI:10.1155/2021/6227384