Neural Linguistic Steganalysis via Multi-Head Self-Attention

Linguistic steganalysis can indicate the existence of steganographic content in suspicious text carriers. Precise linguistic steganalysis on suspicious carrier is critical for multimedia security. In this paper, we introduced a neural linguistic steganalysis approach based on multi-head self-attenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Electrical and Computer Engineering 2021-04, Vol.2021, p.1-5
Hauptverfasser: Jiao, Sai-Mei, Wang, Hai-feng, Zhang, Kun, Hu, Ya-qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Linguistic steganalysis can indicate the existence of steganographic content in suspicious text carriers. Precise linguistic steganalysis on suspicious carrier is critical for multimedia security. In this paper, we introduced a neural linguistic steganalysis approach based on multi-head self-attention. In the proposed steganalysis approach, words in text are firstly mapped into semantic space with a hidden representation for better modeling the semantic features. Then, we utilize multi-head self-attention to model the interactions between words in carrier. Finally, a softmax layer is utilized to categorize the input text as cover or stego. Extensive experiments validate the effectiveness of our approach.
ISSN:2090-0147
2090-0155
DOI:10.1155/2021/6668369