Factor VIII and von Willebrand factor are ligands for the carbohydrate-receptor Siglec-5
Factor VIII (FVIII) and von Willebrand factor (VWF) circulate in plasma in a tight non-covalent complex, being critical to hemostasis. Although structurally unrelated, both share the presence of sialylated glycan-structures, making them potential ligands for sialic-acid-binding-immunoglobulin-like-l...
Gespeichert in:
Veröffentlicht in: | Haematologica (Roma) 2012-12, Vol.97 (12), p.1855-1863 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Factor VIII (FVIII) and von Willebrand factor (VWF) circulate in plasma in a tight non-covalent complex, being critical to hemostasis. Although structurally unrelated, both share the presence of sialylated glycan-structures, making them potential ligands for sialic-acid-binding-immunoglobulin-like-lectins (Siglecs).
We explored the potential interaction between FVIII/VWF and Siglec-5, a receptor expressed in macrophages using various experimental approaches, including binding experiments with purified proteins and cell-binding studies with Siglec-5 expressing cells. Finally, Siglec-5 was overexpressed in mice via hydrodynamic gene transfer.
In different systems using purified proteins, saturable, dose-dependent and reversible interactions between a soluble Siglec-5 fragment and both hemostatic proteins were found. Sialidase treatment of VWF resulted in a complete lack of Siglec-5 binding. In contrast, sialidase treatment left interactions between FVIII and Siglec-5 unaffected. FVIII and VWF also bound to cellsurface exposed Siglec-5, as was visualized by classical immunostaining as well as by Duolinkproximity ligation assays. Co-localization of FVIII and VWF with early endosomal markers further suggested that binding to Siglec-5 is followed by endocytosis of the proteins. Finally, overexpression of human Siglec-5 in murine hepatocytes following hydrodynamic gene transfer resulted in a significant decrease in plasma levels of FVIII and VWF in these mice.
Our data indicate that FVIII and VWF may act as a ligand for Siglec-5, and that Siglec-5 may contribute to the regulation of plasma levels of the FVIII/VWF complex. |
---|---|
ISSN: | 0390-6078 1592-8721 |
DOI: | 10.3324/haematol.2012.063297 |