Thurston’s fragmentation and c-principles

In this paper, we generalize the original idea of Thurston for the so-called Mather-Thurston’s theorem for foliated bundles to prove new variants of this theorem for PL homeomorphisms and contactormorphisms. These versions answer questions posed by Gelfand-Fuks ([GF73, Section 5]) and Greenberg ([Gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2023-01, Vol.11, Article e34
1. Verfasser: Nariman, Sam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we generalize the original idea of Thurston for the so-called Mather-Thurston’s theorem for foliated bundles to prove new variants of this theorem for PL homeomorphisms and contactormorphisms. These versions answer questions posed by Gelfand-Fuks ([GF73, Section 5]) and Greenberg ([Gre92]) on PL foliations and Rybicki ([Ryb10, Section 11]) on contactomorphisms. The interesting point about the original Thurston’s technique compared to the better-known Segal-McDuff’s proof of the Mather-Thurston theorem is that it gives a compactly supported c-principle theorem without knowing the relevant local statement on open balls. In the appendix, we show that Thurston’s fragmentation implies the non-abelian Poincare duality theorem and its generalization using blob complexes ([MW12, Theorem 7.3.1]). To the memory of John Mather.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2023.29