A new and accurate qPCR protocol to detect plant pathogenic bacteria of the genus ‘Candidatus Liberibacter’ in plants and insects

Four pathogenic bacterial species of the genus ‘ Candidatus Liberibacter’, transmitted by psyllid vectors, have been associated with serious diseases affecting economically important crops of Rutaceae, Apiaceae and Solanaceae families. The most severe disease of citrus plants, huanglongbing (HLB), i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-02, Vol.13 (1), p.3338-3338, Article 3338
Hauptverfasser: de Chaves, María Quintana-González, Morán, Félix, Barbé, Silvia, Bertolini, Edson, de la Rosa, Felipe Siverio, Marco-Noales, Ester
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Four pathogenic bacterial species of the genus ‘ Candidatus Liberibacter’, transmitted by psyllid vectors, have been associated with serious diseases affecting economically important crops of Rutaceae, Apiaceae and Solanaceae families. The most severe disease of citrus plants, huanglongbing (HLB), is associated with ‘ Ca . Liberibacter asiaticus’ (CaLas), ‘ Ca . Liberibacter americanus’ (CaLam) and ‘ Ca . Liberibacter africanus’ (CaLaf), while ‘ Ca . Liberibacter solanacearum’ (CaLsol) is associated with zebra chip disease in potatoes and vegetative disorders in apiaceous plants. Since these bacteria remain non-culturable and their symptoms are non-specific, their detection and identification are done by molecular methods, mainly based on PCR protocols. In this study, a new quantitative real-time PCR protocol based on TaqMan probe, which can also be performed in a conventional PCR version, has been developed to detect the four known phytopathogenic species of the genus Liberibacter . The new protocol has been validated according to European Plant Protection Organization (EPPO) guidelines and is able to detect CaLas, CaLam, CaLaf and CaLsol in both plants and vectors, not only using purified DNA but also using crude extracts of potato and citrus or psyllids. A comparative analysis with other previously described qPCR protocols revealed that this new one developed in this study is more specific and equally or more sensitive. Thus, other genus-specific qPCR protocols have important drawbacks regarding the lack of specificity, while with the new protocol there was no cross-reactions in 250 samples from 24 different plant and insect species from eight different geographical origins. Therefore, it can be used as a rapid and time-saving screening test, as it allows simultaneous detection of all plant pathogenic species of ‘ Ca. Liberibacter’ in a one-step assay.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-30345-0