Green production of a yellow laccase by Coriolopsis gallica for phenolic pollutants removal

As a group of green biocatalysts, fungal laccases have aroused great interest in diverse biotechnological fields. Therein, yellow laccase has advantages over blue laccase in catalytic performance, but it is not common in the reported fungal laccases. Here, we report a yellow laccase from white-rot f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMB Express 2022-07, Vol.12 (1), p.96-96, Article 96
Hauptverfasser: Cen, Qingjing, Wu, Xiaodan, Cao, Leipeng, Lu, Yanjuan, Lu, Xuan, Chen, Jianwen, Fu, Guiming, Liu, Yuhuan, Ruan, Roger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a group of green biocatalysts, fungal laccases have aroused great interest in diverse biotechnological fields. Therein, yellow laccase has advantages over blue laccase in catalytic performance, but it is not common in the reported fungal laccases. Here, we report a yellow laccase from white-rot fungus Coriolopsis gallica NCULAC F1 about its production, purification, characterization, and application. Laccase production in the co-fermentation of pomelo peel and wheat bran reached the enzyme activity by 10,690 U/L after 5 days with a 13.58-time increase. After three steps of purification, laccase increased the specific activity from 30.78 to 188.79 U/mg protein with an activity recovery of 45.64%. The purified C. gallica laccase (CGLac) showed a molecular mass of about 57 kDa. CGLac had a yellow color and no absorption peaks at 610 nm and 330 nm, suggesting that it’s a yellow laccase. CGLac exhibited stability towards temperature (40–60 °C) and neutral pH (6.0–8.0). Fe 3+ and Mn 2+ strongly stimulated CGLac activity by 162.56% and 226.05%, respectively. CGLac remained high activities when exposed to organic reagents and putative inhibitors. Additionally, CGLac contributed to 90.78%, 93.26%, and 99.66% removal of phenol, p -chlorophenol and bisphenol A after 120 min, respectively. In conclusion, a green efficient production strategy was introduced for fungal laccase, and the obtained CGLac presented great enzymatic properties and catalytic potential in the removal of phenolic pollutants. Key points Pomelo peels and wheat bran are great nutritional sources and laccase inducers. CGLac showed the spectral characteristic of yellow laccase. CGLac had great stability and catalytic ability for phenolic pollutants removal.
ISSN:2191-0855
2191-0855
DOI:10.1186/s13568-022-01434-6