Analysis and implementation of a drag-type vertical-axis wind turbine for small distributed wind energy systems

This article investigates a drag-type vertical-axis wind turbine that is targeted for small-scale wind energy system applications. Based on aerodynamics models, the three-dimensional simulation studies have been carried out to obtain the force distributions along blades and eventually the torque and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mechanical engineering 2019-01, Vol.11 (1)
Hauptverfasser: Li, Zheng, Han, Ruihua, Gao, Peifeng, Wang, Caisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article investigates a drag-type vertical-axis wind turbine that is targeted for small-scale wind energy system applications. Based on aerodynamics models, the three-dimensional simulation studies have been carried out to obtain the force distributions along blades and eventually the torque and power coefficients for different vertical-axis wind turbine configurations. An optimal vertical-axis wind turbine configuration is chosen based on the comparative analysis, and a 2 kW prototype system has been implemented based on the design. The effectiveness of the three-dimensional models and simulation results has been verified by the measured data from the actual vertical-axis wind turbine system. The wake impacts to the vertical-axis wind turbine caused by nearby objects are also analyzed. The simulation results and the actual operation experiences show that the proposed system has the characteristics of low cut-in speed, high power density, and robustness to adjacent objects (such as buildings and other wind turbines), which make it suitable for small-scale wind energy systems in populated areas including urban environment.
ISSN:1687-8132
1687-8140
DOI:10.1177/1687814019825709