Analysis and implementation of a drag-type vertical-axis wind turbine for small distributed wind energy systems
This article investigates a drag-type vertical-axis wind turbine that is targeted for small-scale wind energy system applications. Based on aerodynamics models, the three-dimensional simulation studies have been carried out to obtain the force distributions along blades and eventually the torque and...
Gespeichert in:
Veröffentlicht in: | Advances in mechanical engineering 2019-01, Vol.11 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article investigates a drag-type vertical-axis wind turbine that is targeted for small-scale wind energy system applications. Based on aerodynamics models, the three-dimensional simulation studies have been carried out to obtain the force distributions along blades and eventually the torque and power coefficients for different vertical-axis wind turbine configurations. An optimal vertical-axis wind turbine configuration is chosen based on the comparative analysis, and a 2 kW prototype system has been implemented based on the design. The effectiveness of the three-dimensional models and simulation results has been verified by the measured data from the actual vertical-axis wind turbine system. The wake impacts to the vertical-axis wind turbine caused by nearby objects are also analyzed. The simulation results and the actual operation experiences show that the proposed system has the characteristics of low cut-in speed, high power density, and robustness to adjacent objects (such as buildings and other wind turbines), which make it suitable for small-scale wind energy systems in populated areas including urban environment. |
---|---|
ISSN: | 1687-8132 1687-8140 |
DOI: | 10.1177/1687814019825709 |