Evaluating China's anthropogenic CO2 emissions inventories: a northern China case study using continuous surface observations from 2005 to 2009

China has pledged reduction of carbon dioxide (CO2) emissions per unit of gross domestic product (GDP) by 60 %–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. However, the lack of observational data and disagreement among the many available inventories makes it difficult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2020-03, Vol.20 (6), p.3569-3588
Hauptverfasser: Dayalu, Archana, Munger, J William, Wang, Yuxuan, Wofsy, Steven C, Zhao, Yu, Nehrkorn, Thomas, Nielsen, Chris, McElroy, Michael B, Chang, Rachel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:China has pledged reduction of carbon dioxide (CO2) emissions per unit of gross domestic product (GDP) by 60 %–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. However, the lack of observational data and disagreement among the many available inventories makes it difficult for China to track progress toward these goals and evaluate the efficacy of control measures. To demonstrate the value of atmospheric observations for constrainingCO2 inventories we track the ability of CO2 concentrations predicted from three different CO2 inventories to match a unique multi-year continuous record of atmospheric CO2. Our analysis time window includes the key commitment period for the Paris Agreement (2005) and the Beijing Olympics (2008). One inventory is China-specific and two are spatial subsets of global inventories. The inventories differ in spatial resolution, basis in national or subnational statistics, and reliance on global or China-specific emission factors. We use a unique set of historical atmospheric observations from 2005 to 2009 to evaluate the three CO2 emissions inventories within China's heavily industrialized and populated northern region accounting for∼33 %–41 % of national emissions. Each anthropogenic inventory is combined with estimates of biogenic CO2 within a high-resolution atmospheric transport framework to model the time series of CO2 observations. To convert the model–observation mismatch from mixing ratio to mass emission rates we distribute it over a region encompassing 90 % of the total surface influence in seasonal (annual) averaged back-trajectory footprints (L_0.90 region). The L_0.90 region roughly corresponds to northern China. Except for the peak growing season, where assessment of anthropogenic emissions is entangled with the strong vegetation signal, we find the China-specific inventory based on subnational data and domestic field studies agrees significantly better with observations than the global inventories at all timescales. Averaged over the study time period, the unscaled China-specific inventory reports substantially larger annual emissions for northern China (30 %) and China as a whole (20 %) than the two unscaled global inventories. Our results, exploiting a robust time series of continuous observations, lend support to the rates and geographic distribution in the China-specific inventory Though even long-term observations at a single site reveal differences among inventories, exploring inventory
ISSN:1680-7316
1680-7324
DOI:10.5194/acp-20-3569-2020